Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM007976
Első szerző:Pethő Attila (matematikus, informatikus)
Cím:Torsion groups of elliptic curves with integral j-invariant over general cubic number fields / Attila Pethő, Thomas Weiss, Horst G. Zimmer
Dátum:1997
ISSN:0218-1967
Megjegyzések:In [15] and [16] all possible torsion groups of elliptic curves E with integral j-invariant over quadratic and pure cubic number fields K are determined. Moreover, with the exception of the torsion groups of isomorphism types Z/2Z, Z/3Z and Z/2ZxZ/2Z, all elliptic curves E and all basic quadratic and pure cubic fields K such that E over K has one of these torsion groups were computed. The present paper is aimed at solving the corresponding problem for general cubic number fields K. In the general cubic case, the above groups Z/2Z, Z/3Z and Z/2ZxZ/2Z and, in addition, the groups Z/4Z, Z/5Z occur as torsion groups of infinitely many curves E with integral j-invariant over infinitely many cubic fields K. For all the other possible torsion groups, the (finitely any) elliptic curves with integral j over the (finitely many) cubic fields K are calculated here. Of course, the results obtained in [6] for pure cubic fields and in [24] for cyclic cubic fields are regained by our algorithms. However, compared with [15] and [6], a solution of the torsion group problem in the much more involved general cubic case requires some essentially new methods. In fact we shall use Gröbner basis techniques and elimination theory to settle the general case.
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
Elliptic curve
cubic number field
torsion group
reduction theory
parametrization
norm equation
elimination
Gröbner basis
Megjelenés:International Journal of Algebra and Computation. - 7 : 3 (1997), p. 353-413. -
További szerzők:Weiss, Thomas Zimmer, Horst Günter
Internet cím:DOI
elektronikus változat
Borító:
Rekordok letöltése1