Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM009763
Első szerző:Harangozó Roland
Cím:Subsampling strategies to improve learning-based retina vessel segmentation / Roland Harangozó, Péter Veres, András Hajdu
Dátum:2009
Megjegyzések:The proper segmentation of the vascular system of the retina has a very important role in automatic screening systems. Its detection helps the localization of other anatomical parts and also the detection of possible vascular disorders. State-of-the-art machine learning algorithms are reported to have good performance in this field. However, with the spatial resolution of the fundus images growing, it is necessary to decrease the number of training pixels to save computations. In this paper, we investigate several subsampling strategies with the motivation to find the best segmentation results with involving fewer pixels into the analyses. Besides checking the computational advantages, we demonstrate how the segmentation accuracy drops with the level of subsampling.
Tárgyszavak:Műszaki tudományok Informatikai tudományok konferenciacikk
Centroidal Voronoi tessellations
Retinal screening
Subsampling
Vessel segmentation
Automatic screening
Centroidal Voronoi tessellations
Computational advantages
Fundus image
Machine learning algorithms
Retina vessels
Segmentation accuracy
Segmentation results
Spatial resolution
Vascular system
Vessel segmentation
Image processing
Imaging systems
Ophthalmology
Pixels
Learning algorithms
Megjelenés:IEEE 16th International Conference on Image Processing (ICIP2009), 7-11 November 2009, Cairo, Egypt [Elektronikus dokumentum]. - 16 (2009), p. 3349-3352. -
További szerzők:Veres Péter Hajdu András (1973-) (matematikus, informatikus)
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
DOI
Borító:
Rekordok letöltése1