Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM060406
035-os BibID:
(WoS)000384428500005 (Scopus)84990212169
Első szerző:
Vágner Anikó (informatikus)
Cím:
The GridOPTICS clustering algorithm / Anikó Vágner
Dátum:
2016
ISSN:
1088-467X 1571-4128
Megjegyzések:
The OPTICS algorithm is a hierarchical density-based clustering method. It creates reachability plots to identify all clusters in the point set. Nevertheless, it has limitation, namely it is very slow for large data sets. We introduce the GridOPTICS algorithm, which builds a grid structure to reduce the number of data points, then it applies the OPTICS clustering algorithm on the grid structure. In order to get the clusters, the algorithm uses the reachability plots of the grid structure, then it determines to which cluster the original input points belong. The experimental results show that our new algorithm is faster than the OPTICS, the speed-up can be one or two orders of magnitude or more, which depends mainly on the (tau) parameter of the GridOPTICS algorithm. At the end of the article, we give some advice to which point set you can apply the GridOPTICS algorithm.
Tárgyszavak:
Műszaki tudományok
Informatikai tudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
clustering
large data set
optics
grid
Intelligens város közösségi alkotásból
Megjelenés:
Intelligent Data Analysis. - 20 : 5 (2016), p. 1061-1084. -
Pályázati támogatás:
TÁMOP-4.2.2.C-11/1/KONV-2012-0001
TÁMOP
Adat menedzsment és tudásfeltárás intelligens város alkalmazásokhoz
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.