Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM067530
Első szerző:Varga Péter (matematikus, informatikus)
Cím:Characterization of semi-CNS polynomials / Péter Varga
Dátum:2011
Megjegyzések:The concept of CNS generalizes the negative-base radix representation of integers. It was introduced and studied in [2]. The characterization of CNS polynomials already for degree three is complicated, as indicated in [3]. It is still unsolved. Burcsi and Kovács [1] called P(x) a semi-CNS polynomial if the finite expansions (1) form an additive semigroup. This is a generalization of the usual radix representations of natural numbers. They were able to prove some sufficient properties for P(x) being a semi-CNS polynomial. Moreover they generalized Brunotte's algorithm for semi-CNS polynomials. In this talk, which is based on a joint work with A. Pethő we give a complete characterization of cubic semi-CNS polynomials. More precisely, in all those polynomials, which do not satisfy the condition given by Burcsi and Kovács, are not semi-CNS. To prove this we present a cycle for each polynomials.
ISBN:978-963-9056-38-1
Tárgyszavak:Természettudományok Matematika- és számítástudományok tanulmány, értekezés
cns
number systems
Megjelenés:The 8th Joint Conference on Mathematics and Computer Science : Selected Papers / ed. Pop, Horia F. et al. - p. 67-85. -
Internet cím:Szerző által megadott URL
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1