Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM090850
035-os BibID:
(WoS)000603258100006 (Scopus)85098259626
Első szerző:
Sütő József (programtervező informatikus)
Cím:
Plant leaf recognition with shallow and deep learning : a comprehensive study / Jozsef Suto
Dátum:
2020
ISSN:
1088-467X
Megjegyzések:
Nowadays there are hundreds of thousands known plant species on the Earth and many are still unknown yet. The process of plant classification can be performed using different ways but the most popular approach is based on plant leaf characteristics. Most types of plants have unique leaf characteristics such as shape, color, and texture. Since machine learning and vision considerably developed in the past decade, automatic plant species (or leaf) recognition has become possible. Recently, the automated leaf classification is a standalone research area inside machine learning and several shallow and deep methods were proposed to recognize leaf types. From 2007 to present days several research papers have been published in this topic. In older studies the classifier was a shallow method while in current works many researchers applied deep networks for classification. During the overview of plant leaf classification literature, we found an interesting deficiency (lack of hyper-parameter search) and a key difference between studies (different test sets). This work gives an overall review about the efficiency of shallow and deep methods under different test conditions. It can be a basis to further research
Tárgyszavak:
Műszaki tudományok
Informatikai tudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Megjelenés:
Intelligent Data Analysis. - 24 : 6 (2020), p. 1311-1328. -
Pályázati támogatás:
EFOP-3.6.3-VEKOP-16-2017-00002
EFOP
20428-3/2018/FEKUTSTRAT
egyéb
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.