Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM091585
035-os BibID:(cikkazonosító)333 (WoS)000621996400001
Első szerző:Phinzi, Kwanele
Cím:Mapping Permanent Gullies in an Agricultural Area Using Satellite Images : Efficacy of Machine Learning Algorithms / Phinzi Kwanele, Holb Imre, Szabó Szilárd
Dátum:2021
ISSN:2073-4395
Megjegyzések:Gullies are responsible for detaching massive volumes of productive soil, dissecting natural landscape and causing damages to infrastructure. Despite existing research, the gravity of the gully erosion problem underscores the urgent need for accurate mapping of gullies, a first but essential step toward sustainable management of soil resources. This study aims to obtain the spatial distribution of gullies through comparing various classifiers: k-dimensional tree K-Nearest Neighbor (k-d tree KNN), Minimum Distance (MD), Maximum Likelihood (ML), and Random Forest (RF). Results indicated that all the classifiers, with the exception of ML, achieved an overall accuracy (OA) of at least 0.85. RF had the highest OA (0.94), although it was outperformed in gully identification by MD (0% commission), but the omission error was 20% (MD). Accordingly, RF was considered as the best algorithm, having 13% error in both adding (commission) and omitting pixels as gullies. Thus, RF ensured a reliable outcome to map the spatial distribution of gullies. RF-derived gully density map reflected the agricultural areas most exposed to gully erosion. Our approach of using satellite imagery has certain limitations, and can be used only in arid or semiarid regions where gullies are not covered by dense vegetation as the vegetation biases the extracted gullies. The approach also provides a solution to the lack of laser scanned data, especially in the context of the study area, providing better accuracy and wider application possibilities.
Tárgyszavak:Természettudományok Földtudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
gully erosion
image classification
K-Nearest Neighbor
random forest
minimum distance
maximum likelihood
Megjelenés:Agronomy-Basel. - 11 : 2 (2021), p. 1-16. -
További szerzők:Holb Imre (1973-) (agrármérnök) Szabó Szilárd (1974-) (geográfus)
Pályázati támogatás:TNN 123457 NKFI
Egyéb
Thematic Excellence Programme (TKP2020-NKA-04) of the Ministry for Innovation and Technology in Hungary projects
Egyéb
K131478
OTKA
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1