Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM091945
035-os BibID:(cikkazonosító)857 (WOS)000628506100001 (Scopus)85102203063
Első szerző:Varga Orsolya Gyöngyi (geográfus)
Cím:Validation of Visually Interpreted Corine Land Cover Classes with Spectral Values of Satellite Images and Machine Learning / Orsolya Gyöngyi Varga, Zoltán Kovács, László Bekő, Péter Burai, Zsuzsanna Csatáriné Szabó, Imre Holb, Sarawut Ninsawat, Szilárd Szabó
Dátum:2021
ISSN:2072-4292
Megjegyzések:We analyzed the Corine Land Cover 2018 (CLC2018) dataset to reveal the correspondence between land cover categories of the CLC and the spectral information of Landsat-8, Sentinel-2 and PlanetScope images. Level 1 categories of the CLC2018 were analyzed in a 25 km ? 25 km study area in Hungary. Spectral data were summarized by land cover polygons, and the dataset was evaluated with statistical tests. We then performed Linear Discriminant Analysis (LDA) and Random Forest classifications to reveal if CLC L1 level categories were confirmed by spectral values. Wetlands and water bodies were the most likely to be confused with other categories. The least mixture was observed when we applied the median to quantify the pixel variance of CLC polygons. RF outperformed the LDA's accuracy, and PlanetScope's data were the most accurate. Analysis of class level accuracies showed that agricultural areas and wetlands had the most issues with misclassification. We proved the representativeness of the results with a repeated randomized test, and only PlanetScope seemed to be ungeneralizable. Results showed that CLC polygons, as basic units of land cover, can ensure 71.1?78.5% OAs for the three satellite sensors; higher geometric resolution resulted in better accuracy. These results justified CLC polygons, in spite of visual interpretation, can hold relevant information about land cover considering the surface reflectance values of satellites. However, using CLC as ground truth data for land cover classifications can be questionable, at least in the L1 nomenclature.
Tárgyszavak:Természettudományok Földtudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
landsat
sentinel
planet
CLC2018
Recursive Feature Elimination
validation
representativeness
Random Forest
Linear Discriminant Analysis
Megjelenés:Remote Sensing. - 13 : 5 (2021), p. 1-24. -
További szerzők:Kovács Zoltán (1988-) (geográfus) Bekő László (1986-) (okleveles vidékfejlesztési agrármérnök) Burai Péter (1977-) (agrármérnök) Szabó Zsuzsanna (1985-) (környezetgazdálkodási és vidékfejlesztési agrármérnök) Holb Imre (1973-) (agrármérnök) Ninsawat, Sarawut Szabó Szilárd (1974-) (geográfus)
Pályázati támogatás:TNN 123457
Egyéb
ÚNKP-19-3-III-DE-94
Egyéb
TKP2020-NKA-04
Egyéb
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1