Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM092558
035-os BibID:(cikkazonosító)1407 (WoS)000634343500001 (Scopus)85102714615
Első szerző:Bukva Mátyás
Cím:Raman Spectral Signatures of Serum-Derived Extracellular Vesicle-Enriched Isolates May Support the Diagnosis of CNS Tumors / Matyas Bukva, Gabriella Dobra, Juan Gomez-Perez, Krisztian Koos, Maria Harmati, Edina Gyukity-Sebestyen, Tamas Biro, Adrienn Jenei, Sandor Kormondi, Peter Horvath, Zoltan Konya, Almos Klekner, Krisztina Buzas
Dátum:2021
ISSN:2072-6694
Megjegyzések:Investigating the molecular composition of small extracellular vesicles (sEVs) for tumor diagnostic purposes is becoming increasingly popular, especially for diseases for which diagnosis is challenging, such as central nervous system (CNS) malignancies. Thorough examination of the molecular content of sEVs by Raman spectroscopy is a promising but hitherto barely explored approach for these tumor types. We attempt to reveal the potential role of serum-derived sEVs in diagnosing CNS tumors through Raman spectroscopic analyses using a relevant number of clinical samples. A total of 138 serum samples were obtained from four patient groups (glioblastoma multiforme, non-small-cell lung cancer brain metastasis, meningioma and lumbar disc herniation as control). After isolation, characterization and Raman spectroscopic assessment of sEVs, the Principal Component Analysis?Support Vector Machine (PCA?SVM) algorithm was performed on the Raman spectra for pairwise classifications. Classification accuracy (CA), sensitivity, specificity and the Area Under the Curve (AUC) value derived from Receiver Operating Characteristic (ROC) analyses were used to evaluate the performance of classification. The groups compared were distinguishable with 82.9?92.5% CA, 80?95% sensitivity and 80?90% specificity. AUC scores in the range of 0.82?0.9 suggest excellent and outstanding classification performance. Our results support that Raman spectroscopic analysis of sEV-enriched isolates from serum is a promising method that could be further developed in order to be applicable in the diagnosis of CNS tumors.
Tárgyszavak:Orvostudományok Elméleti orvostudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Megjelenés:Cancers. - 13 : 6 (2021), p. 1407-1426. -
További szerzők:Dobra Gabriella Gomez-Perez, Juan Koós Krisztián Harmati Mária Gyukity-Sebestyén Edina Bíró Tamás (1968-) (élettanász) Jenei Adrienn (1978-) (biológus, kémikus) Kormondi Sándor Horváth Péter Kónya Zoltán (Szeged) Klekner Álmos (1970-) (idegsebész) Buzás Krisztina
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1