Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM101166
035-os BibID:(WoS)000775913000001 (Scopus)85127426857
Első szerző:Aldabbas, Ashraf Khaled Abd Elkareem (informatikus)
Cím:Recurrent neural network variants based model for Cassini-Huygens spacecraft trajectory modifications recognition / Ashraf ALDabbas, Zoltan Gal
Dátum:2022
ISSN:1433-3058 0941-0643
Megjegyzések:Over the last 13.7 years period of the Cassini mission, amendments to the spacecraft's flight path were needed. This research is being carried out as there is a limited number of studies that use a temporal discrimination analysis to handle raw data. More complex inspection and analysis of the collected broad trajectory dataset is necessary to classify orbital events in the signal travel period (approximately 88 minutes on the Earth-Cassini travel channel length). This paper provides an innovative, in-depth learning method to identify offline modifications in the Cassini spacecraft trajectory. The models are based on variants of Recurrent Neural Networks (RNNs: Gated Recurrent Unit (GRU)/ Long Short-Term Memory (LSTM)/ Bidirectional Long Short-Term Memory (BiLSTM)) to derive valuable data and learn the inner data structure of the time sequence, along with the penetration of long-term and short-term phase-dependencies of the RNNs layers. To validate our models, we used a variety of statistical approaches in our analysis. A considerable number of tests have been carried out, and the findings obtained have shown that the GRU and LSTM give a substantial boost to increasing the efficiency of the detection mechanism. The proposed model would consolidate potential exploration in outer space exploration to accommodate massive databases, search for correlations, and recognize complex events and outliers with an accuracy that exceeds 99 %. This method can be utilized for similar detection processes within the future outer space expedition. The results show that binary classifications of Matthews Correlation Coefficient (MCC) are more accurate than F1 score.
Tárgyszavak:Műszaki tudományok Informatikai tudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Cassini-Huygens interplanetary project
Artificial intelligence
Knowledge representation
Sensory data
Megjelenés:Neural Computing & Applications. - 2022 (2022), p. 13575-13598. -
További szerzők:Gál Zoltán (1966-) (informatikus)
Pályázati támogatás:TKP2021
Egyéb
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1