Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM102153
035-os BibID:(Scopus)85131553351 (cikkazonosító)5451 (WOS)000809194500001
Első szerző:Huri Dávid (gépészmérnök)
Cím:Surrogate Model-Based Parameter Tuning of Simulated Annealing Algorithm for the Shape Optimization of Automotive Rubber Bumpers / Dávid Huri, Tamás Mankovits
Dátum:2022
ISSN:2076-3417
Megjegyzések:Featured Application The developed surrogate model-based parameter tuning method of the simulated annealing algorithm is suitable for solving not only numerical simulation optimization problems but also other computationally intensive model-driven optimizations. A design engineer has to deal with increasingly complex design tasks on a daily basis, for which the available design time is shrinking. Market competitiveness can be improved by using optimization if the design process can be automated. If there is limited information about the behavior of the objective function, global search methods such as simulated annealing (SA) should be used. This algorithm requires the selection of a number of parameters based on the task. A procedure for reducing the time spent on tuning the SA algorithm for computationally expensive, simulation-driven optimization tasks was developed. The applicability of the method was demonstrated by solving a shape optimization problem of a rubber bumper built into air spring structures of lorries. Due to the time-consuming objective function call, a support vector regression (SVR) surrogate model was used to test the performance of the optimization algorithm. To perform the SVR training, samples were taken using the maximin Latin hypercube design. The SA algorithm with an adaptive search space and different cooling schedules was implemented. Subsequently, the SA parameters were fine-tuned using the trained SVR surrogate model. An optimal design was found using the adapted SA algorithm with negligible error from a technical aspect.
Tárgyszavak:Műszaki tudományok Anyagtudományok és technológiák idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
finite element analysis
hyperelastic material model
support vector regression
engineering optimization
simulated annealing
parameter tuning
Megjelenés:Applied Sciences-Basel. - 12 : 11 (2022), p. 1-22. -
További szerzők:Mankovits Tamás (1981-) (gépészmérnök)
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1