Bejelentkezés
Magyar
Toggle navigation
Tudóstér
Bejelentkezés
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM104832
Első szerző:
Gravesteijn, Benjamin Yaël
Cím:
Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury / Benjamin Y. Gravesteijn, Daan Nieboer, Ari Ercole, Hester F. Lingsma, David Nelson, Ben van Calster, Ewout W. Steyerberg, CENTER-TBI collaborators
Dátum:
2020
ISSN:
0895-4356
Megjegyzések:
Objective We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations.
Tárgyszavak:
Orvostudományok
Elméleti orvostudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Machine learning
Prognosis
Traumatic brain injury
Prediction
Data science
Cohort study
Megjelenés:
Journal Of Clinical Epidemiology. - 122 (2020), p. 95-107. -
További szerzők:
Nieboer, Daan
Ercole, Ari
Lingsma, Hester
Nelson, David
Calster, Ben van
Steyerberg, Ewout W.
Sándor János (1966-) (orvos-epidemiológus)
CENTER-TBI collaborators
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v10.1.21-SNAPSHOT
© 2024
Monguz kft.
Minden jog fenntartva.