Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM112828
035-os BibID:
(cikkazonosító)100301 (scopus)85150340740
Első szerző:
Wilm, Frauke
Cím:
Pan-tumor T-lymphocyte detection using deep neural networks : Recommendations for transfer learning in immunohistochemistry / Wilm Frauke, Ihling Christian, Méhes Gábor, Terracciano Luigi, Puget Chloé, Klopfleisch Robert, Schüffler Peter, Aubreville Marc, Maier Andreas, Mrowiec Thomas, Breininger Katharina
Dátum:
2023
ISSN:
2153-3539
Megjegyzések:
The success of immuno-oncology treatments promises long-term cancer remission for an increasing number of patients. The response to checkpoint inhibitor drugs has shown a correlation with the presence of immune cells in the tumor and tumor microenvironment. An in-depth understanding of the spatial localization of immune cells is therefore critical for understanding the tumor's immune landscape and predicting drug response. Computer-aided systems are well suited for efficiently quantifying immune cells in their spatial context. Conventional image analysis approaches are often based on color features and therefore require a high level of manual interaction. More robust image analysis methods based on deep learning are expected to decrease this reliance on human interaction and improve the reproducibility of immune cell scoring. However, these methods require sufficient training data and previous work has reported low robustness of these algorithms when they are tested on out-of-distribution data from different pathology labs or samples from different organs. In this work, we used a new image analysis pipeline to explicitly evaluate the robustness of marker-labeled lymphocyte quantification algorithms depending on the number of training samples before and after being transferred to a new tumor indication. For these experiments, we adapted the RetinaNet architecture for the task of T-lymphocyte detection and employed transfer learning to bridge the domain gap between tumor indications and reduce the annotation costs for unseen domains. On our test set, we achieved human-level perfor- mance for almost all tumor indications with an average precision of 0.74 in-domain and 0.72?0.74 cross-domain. From our results, we derive recommendations for model development regarding annotation extent, training sample selection, and label extraction for the development of robust algorithms for immune cell scoring. By extending the task of marker-labeled lymphocyte quantification to a multi-class detection task, the pre-requisite for subsequent analyses, e.g., distinguishing lymphocytes in the tumor stroma from tumor-infiltrating lymphocytes, is met.
Tárgyszavak:
Orvostudományok
Klinikai orvostudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Megjelenés:
Journal of Pathology Informatics. - 14 (2023), p. 1-16. -
További szerzők:
Ihling, Christian
Méhes Gábor (1966-) (patológus)
Terracciano, Luigi
Puget, Chloé
Klopfleisch, Robert
Schüffler, Peter
Aubreville, Marc
Maier, Andreas
Mrowiec, Thomas
Breininger, Katharina
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.