Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM117943
Első szerző:
Kovásznai Gergely
Cím:
Integer Programming Based Optimization of Power Consumption for Data Center Networks / Gergely Kovásznai, Mohammed Nsaif
Dátum:
2024
ISSN:
0324-721X
Megjegyzések:
With the quickly developing data centers in smart cities, reducing energy consumption and improving network performance, as well as economic benefits, are essential research topics. In particular, Data Center Networks do not always run at full capacity, which leads to significant energy consumption. This paper experiments with a range of optimization tools to find the optimal solutions for the Integer Linear Programming (ILP) model of network power consumption. The study reports on experiments under three communication patterns (near, long, and random), measuring runtime and memory consumption in order to evaluate the performance of different ILP solvers. While the results show that, for near traffic pattern, most of the tools rapidly converge to the optimal solution, CP-SAT provides the most stable performance and outperforms the other solvers for the long traffic pattern. On the other hand, for random traffic pattern, Gurobi can be considered to be the best choice, since it is able to solve all the benchmark instances under the time limit and finds solutions faster by 1 or 2 orders of magnitude than the other solvers do.
Tárgyszavak:
Műszaki tudományok
Informatikai tudományok
idegen nyelvű folyóiratközlemény hazai lapban
folyóiratcikk
integer programming
optimization
power consumption
Data Center Network
solvers
Megjelenés:
Acta Cybernetica. - Epub : - (2024), p. 1-17. -
További szerzők:
Nsaif, Mohammed (informatics)
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.