Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM120944
035-os BibID:(Scopus)85122546501
Első szerző:Brouwer, Edward De
Cím:Corrigendum to Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression : [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180] / Edward De Brouwer, Thijs Becker, Yves Moreau, Eva Kubala Havrdova, Maria Trojano, Sara Eichau, Serkan Ozakbas, Marco Onofrj, Pierre Grammond, Jens Kuhle, Ludwig Kappos, Patrizia Sola, Elisabetta Cartechini, Jeannette Lechner-Scott, Raed Alroughani, Oliver Gerlach, Tomas Kalincik, Franco Granella, Francois Grand'Maison, Roberto Bergamaschi, Maria José Sá, Bart Van Wijmeersch, Aysun Soysal, Jose Luis Sanchez-Menoyo, Claudio Solaro, Cavit Boz, Gerardo Iuliano, Katherine Buzzard, Eduardo Aguera-Morales, Murat Terzi, Tamara Castillo Trivio, Daniele Spitaleri, Vincent Van Pesch, Vahid Shaygannejad, Fraser Moore, Celia Oreja-Guevara, Davide Maimone, Riadh Gouider, Tunde Csepany, Cristina Ramo-Tello, Liesbet Peeters
Dátum:2022
ISSN:0169-2607
Megjegyzések:Background and Objectives Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. Methods We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. Results We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. Conclusions Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.
Tárgyszavak:Orvostudományok Klinikai orvostudományok hozzászólás
folyóiratcikk
Multiple sclerosis
Machine learning
Longitudinal data
Recurrent neural networks
Electronic health records
Disability progression
Real-world data
Megjelenés:Computer Methods And Programs In Biomedicine. - 213 (2022), p. 1-3. -
További szerzők:Becker, Thijs Moreau, Yves Havrdova, Eva Trojano, Maria Eichau, Sara Ozakbas, Serkan Onofrj, Marco Grammond, Pierre Kuhle, Jens Kappos, Ludwig Sola, Patrizia Cartechini, Elisabetta Lechner-Scott, Jeannette Alroughani, Raed Gerlach, Oliver Kalincik, Tomas Granella, Franco Grand'Maison, Francois Bergamaschi, Roberto Sá, Maria José Wijmeersch, Bart Van Soysal, Aysun Sanchez-Menoyo, Jose Solaro, Claudio Boz, Cavit Iuliano, Gerardo Buzzard, Katherine Aguera-Morales, Eduardo Terzi, Murat Trivio, Tamara Castillo Spitaleri, Daniele Pesch, Vincent van Shaygannejad, Vahid Moore, Fraser Oreja-Guevara, Celia Maimone, Davide Gouider, Riadh Csépány Tünde (1956-) (neurológus, pszichiáter) Ramo-Tello, Cristina Peeters, Liesbet
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1