Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM121815
035-os BibID:(WoS)000913143400001 (Scopus)85119048409
Első szerző:Al-Darraji, Salah
Cím:Employee Attrition Prediction Using Deep Neural Networks / Salah Al-Darraji, Dhafer G. Honi, Francesca Fallucchi, Ayad I. Abdulsada, Romeo Giuliano, Husam A. Abdulmalik
Dátum:2021
ISSN:2073-431X
Megjegyzések:Decision-making plays an essential role in the management and may represent the most important component in the planning process. Employee attrition is considered a well-known problem that needs the right decisions from the administration to preserve high qualified employees. Interestingly, artificial intelligence is utilized extensively as an efficient tool for predicting such a problem. The proposed work utilizes the deep learning technique along with some preprocessing steps to improve the prediction of employee attrition. Several factors lead to employee attrition. Such factors are analyzed to reveal their intercorrelation and to demonstrate the dominant ones. Our work was tested using the imbalanced dataset of IBM analytics, which contains 35 features for 1470 employees. To get realistic results, we derived a balanced version from the original one. Finally, cross-validation is implemented to evaluate our work precisely. Extensive experiments have been conducted to show the practical value of our work. The prediction accuracy using the original dataset is about 91%, whereas it is about 94% using a synthetic dataset.
Tárgyszavak:Műszaki tudományok Informatikai tudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
deep learning
machine learning
attrition prediction
Megjelenés:Computers. - 10 : 11 (2021), p. 1-11. -
További szerzők:Alshuwaili, Dhafer Gheni Honi (1991) (Informatics)(PhD) Fallucchi, Francesca Abdulsada, Ayad I. Giuliano, Romeo Abdulmalik, Husam A.
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1