Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM122075
035-os BibID:
(Scopus)85195669359 (WoS)001244602100001
Első szerző:
Diószegi Gergő
Cím:
A new method for individual treetop detection with low-resolution aerial laser scanned data / Gergő Diószegi, Vanda Éva Molnár, Loránd Attila Nagy, Péter Enyedi, Péter Török, Szilárd Szabó
Dátum:
2024
ISSN:
2363-6203 2363-6211
Megjegyzések:
In the past decade, the use of three-dimensional forest information from airborne Light Detection and Ranging (LiDAR) has become widespread in forest inventories. Accurate Individual Treetop Detection (ITD) and crown boundary delineation using LiDAR data are critical for obtaining precise inventory metrics. To address this need, we introduced a novel growing tree region (GTR)-driven ITD method that utilizes canopy height models (CHM) derived from very low-resolution airborne LiDAR data. The GTR algorithm consists of three key stages: (i) preserving all height layers through incremental cutting and stacking of CHM; (ii) employing a three-layer concept to identify individual treetops; and (iii) refining the detected treetops using a distance-based filter. Our method was tested in five temperate forests across Central Europe and was compared against the widely-used local maxima (LM) search combined with an optimized variable window filtering (VWF) technique. Our results showed that the GTR method outperformed LM with VWF, particularly in forests with high canopy density. The achieved root mean square accuracies were 74% for the matching rate, 19% for commission errors, and 27% for omission errors. In comparison, the LM with the VWF method resulted in a matching rate of 71%, commission errors of 20%, and omission errors of 31%. To facilitate the application of our algorithm, we developed an R package called TREETOPS, which seamlessly integrates with the lidR package, ensuring compatibility with existing treetop-based segmentation methods. By introducing TREETOPS, we provide the most accurate open-source tool for detecting treetops using low-resolution LiDAR-derived CHM.
Tárgyszavak:
Természettudományok
Földtudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
CHM-based treetop detection
Growing tree region
Local maxima
Variable window filtering
Low-resolution LiDAR
Central European forest
R
Megjelenés:
Modeling Earth Systems and Environment. - 10 (2024), p. 5225-5240. -
További szerzők:
Molnár Vanda Éva (1994-) (környezetkutató)
Nagy Loránd Attila (1993-) (geográfus)
Enyedi Péter (1982-) (környezettudós)
Török Péter (1979-) (biológus-ökológus)
Szabó Szilárd (1974-) (geográfus)
Pályázati támogatás:
K138079
NKFIH
KKP 144068
NKFIH
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.