Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM122412
Első szerző:
Fézer Tamás (jogász)
Cím:
Upside Down: Liability, Risk Allocation and Artificial Intelligence / Fézer Tamás
Dátum:
2024
Megjegyzések:
The dynamic evolution of artificial intelligence (AI) and machine learning (ML) tools poses challenges to the existing liability concepts. This paper aims to examine some of the fields of tortious liability that are most affected by these developments to analyse whether the existing legal standards in civil liability can still be used, with slight reinterpretation, when approaching liability scenarios related to AI and ML, and whether fine tuning of the existing liability regimes is needed, or novel liability scenarios should be established. To answer this question, the paper begins by examining the nature of the regulation of AI and ML: whether it should be a regulatory regime neutral to technology or whether, instead, a sector specific approach is essential. The study considers the already existing legal authorities of the EU and the U.S. as starting points for the analysis, and briefly examines the interpretations municipal courts apply when deciding in AI and ML related tort cases.
Tárgyszavak:
Társadalomtudományok
Állam- és jogtudományok
idegen nyelvű folyóiratközlemény hazai lapban
folyóiratcikk
data protection
machine learning
privacy law
product liability law
tort law
Megjelenés:
Pro Publico Bono. - 12 : 1 (2024), p. 85-99. -
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.