Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM123669
Első szerző:
Gandhi, Herry Kartika (industrial engineer)
Cím:
Multi-step Natural Gas Price Forecasting using Ensemble Empirical Mode Decomposition and Long Short-Term Memory Hybrid Model / Gandhi, Herry Kartika; Márton, Ispány
Dátum:
2024
ISSN:
2146-4553
Megjegyzések:
With the characteristic of natural gas as a clean, non-toxic, and valuable energy source, its use has been increasing in recent years. Thus, maintaining stable natural gas security requires a reliable long-step price forecasting indicator with less error. We propose a hybrid theory of Ensemble Empirical Mode Decomposition (EEMD) with Long Short-Term Memory (LSTM) to perform multi-step forecasting focusing on 30-90 steps of the daily Henry Hub natural gas price as a dataset. Using four widespread error measurements, the proposed model provides excellent results compared to no decomposition as the benchmark model. The proposed model provides 50% lower error results than the single LSTM. EEMD_LSTM brings values below 10 in the MAPE indicator, even up to 90-step prediction. The Diebold-Mariano test also confirms that EEMD_LSTM outperforms the single LSTM on every step with the majority of 90% confidence level. We also simulated the model by analysing the box and whiskers plot of RMSE, which shows that the variance of predicted values ranges between 1.11%. These results show that the proposed forecasting model provides robust results for the case of medium-term natural gas prices with excellent forecasting results.
Tárgyszavak:
Műszaki tudományok
Informatikai tudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Natural Gas Price
Hybrid Forecasting
EEMD
Decomposition
LSTM
Megjelenés:
International Journal of Energy Economics and Policy. - 14 : 4 (2024), p. 590-598. -
További szerzők:
Ispány Márton (1966-) (informatikus, matematikus)
Pályázati támogatás:
Stipendium Hungaricum Scholarship
Egyéb
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.