Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM124169
Első szerző:Neamah, Husam A. (mérnök)
Cím:Multi-Agents Trajectory Prediction for Autonomous Vehicles with Multi-Modal Predictions / Husam A. Neamah, Mohammad Alghazawi, Peter Korondi
Dátum:2024
Megjegyzések:This paper presents an advanced deep learning framework designed to improve motion prediction in autonomous driving, enhancing safety through better environmental understanding. The Crat-Pred model is enhanced, demonstrating superior performance over existing benchmarks in both qualitative and quantitative analyses, with improved training times and computational efficiencies. The proposed approach addresses a critical research gap by predicting the motion of both vehicles and pedestrians. By utilizing convolutional neural networks and replacing Long-Short-Term Memory (LSTM) networks with Temporal Convolutional Networks (TCN), significant improvements in computational speed and efficiency are achieved. The primary objective is to develop a unified prediction model for all road agents, advancing autonomous navigation. Experiments using the Argoverse 2 dataset validate the model's performance in real-world conditions, showcasing its superiority in forward motion prediction and computational efficiency.
ISBN:9798350378245
Tárgyszavak:Műszaki tudományok Informatikai tudományok tanulmány, értekezés
könyvrészlet
autonomous driving
motion prediction
Temporal Convolutional Network (TCN)
multi-agents
multi-modal
Megjelenés:IEEE CogInfoCom 2024: 2024 15th IEEE International Conference on Cognitive Infocommunications / . - p. 259-264. -
További szerzők:Alghazawi, Mohammad Korondi Péter (1960-) (villamosmérnök)
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1