Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM125425
Első szerző:
Chowdhury, Rubaiyat Shaimom
Cím:
Implications of Artificial Intelligence (AI) and machine learning-based fintech for the financial assets related traditional investment theories / Rubaiyat Shaimom Chowdhury, Aminul Islam, Dayang Hasliza Binti Muhd Yusuf, Mohammad Bin Amin, Sharif Hassan, Suborna Barua, Masuk Abdullah
Dátum:
2024
ISSN:
2572-7923 2572-7931
Megjegyzések:
New technologies always have an impact on traditional theories. Finance theories are no exception to that. In this paper, we have concentrated on the traditional investment theories in finance. The study examined five investment theories, their assumptions, and their limitation from different works of literature. The study considered Artificial Intelligence (AI) and Machine Learning (ML) as representative of financial technology (fintech) and tried to find out from the literature how these new technologies help to reduce the limitations of traditional theories. We have found that fintech does not have an equal impact on every conventional finance theory. Fintech outperforms all five traditional theories but on a different scale.
Tárgyszavak:
Társadalomtudományok
Gazdálkodás- és szervezéstudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
artificial intelligence
machine learning
fintech
traditional investment theories
financial assets
Megjelenés:
Journal of Infrastructure Policy and Development. - 8 : 12 (2024), p. 1-19. -
További szerzők:
Islam, Aminul
Yusuf, Dayang Hasliza Binti Muhd
Mohammad, Bin Amin (1981-) (PhD student)
Hassan, Sharif
Barua, Suborna
Masuk, Abdullah (1997-) (mechatronics)
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.