Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM126277
035-os BibID:
(scopus)85201493485
Első szerző:
De Brouwer, Edward
Cím:
Machine-learning-based prediction of disability progression in multiple sclerosis : an observational, international, multi-center study / De Brouwer E., Becker T., Werthen-Brabants L., Dewulf P., Iliadis D., Dekeyser C., Laureys G., Van Wijmeersch B., Popescu V., Dhaene T., Deschrijver D., Waegeman W., De Baets B., Stock M., Horakova D., Patti F., Izquierdo G., Eichau S., Girard M., Prat A., Lugaresi A., Grammond P., Kalincik T., Alroughani R., Grand'Maison F., Skibina O., Terzi M., Lechner-Scott J., Gerlach O., Khoury S. J., Cartechini E., Van Pesch V., Sa M. J., Weinstock-Guttman B., Blanco Y., Ampapa R., Spitaleri D., Solaro C., Maimone D., Soysal A., Iuliano G., Gouider R., Castillo-Trivino T., Sánchez-Menoyo J. L., Laureys G., van der Walt A., Oh J., Aguera-Morales E., Altintas A., Al-Asmi A., de Gans K., Fragoso Y., Csepany T., Hodgkinson S., Deri N., Al-Harbi T., Taylor B., Gray O., Lalive P., Rozsa C., McGuigan C., Kermode A., Sempere A. P., Mihaela S., Simo M., Hardy T., Decoo D., Hughes S., Grigoriadis N., Sas A., Vella N., Moreau Y., Peeters L.
Dátum:
2024
ISSN:
2767-3170
Megjegyzések:
Background Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. Methods Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. Findings Machine learning models achieved a ROC-AUC of 0?71 ? 0?01, an AUC-PR of 0?26 ? 0?02, a Brier score of 0?1 ? 0?01 and an expected calibration error of 0?07 ? 0?04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. Conclusions Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.
Tárgyszavak:
Orvostudományok
Klinikai orvostudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Machine learning
disability progression
multiple sclerosis
Megjelenés:
PLOS Digital Health. - 3 : 7 (2024), p. 1-25. -
További szerzők:
Becker, Thijs
Werthen-Brabants, Lorin
Dewulf, Pieter
Iliadis, Dimitrios
Dekeyser, Cathérine
Laureys, Guy
Wijmeersch, Bart Van
Popescu, Veronica
Dhaene, Tom
Deschrijver, Dirk
Waegeman, Willem
De Baets, Bernard
Stock, Michael J.
Horakova, Dana
Patti, Francesco
Izquierdo, Guillermo
Eichau, Sara
Girard, Marc
Prat, Alexandre
Lugaresi, Alessandra
Grammond, Pierre
Kalincik, Tomas
Alroughani, Raed
Grand'Maison, Francois
Skibina, Olga
Terzi, Murat
Lechner-Scott, Jeannette
Gerlach, Oliver
Khoury, Samia J.
Cartechini, Elisabetta
Pesch, Vincent van
Sá, Maria José
Weinstock-Guttman, Bianca
Blanco, Yolanda
Ampapa, Radek
Spitaleri, Daniele
Solaro, Claudio
Maimone, Davide
Soysal, Aysun
Iuliano, Gerardo
Gouider, Riadh
Castillo Triviño, Tamara
Sanchez-Menoyo, Jose
Laureys, Guy (Universitary Hospital Ghent)
Walt, Anneke van der
Oh, Jiwon
Aguera-Morales, Eduardo
Altintas, Ayse
Al-Asmi, Abdullah
de Gans, Koen
Fragoso, Yara
Csépány Tünde (1956-) (neurológus, pszichiáter)
Hodgkinson, Suzanne
Deri, Norma
Al-Harbi, Talal
Taylor, Bruce V.
Gray, Orla
Lalive, Patrice H.
Rózsa Csilla
McGuigan, Christopher
Kermode, Allan G.
Sempere, Perez A.
Simu, Mihaela
Simó Magdolna
Hardy, Todd A.
Decoo, Danny
Hughes, Stella
Grigoriadis, Nikolaos
Sas Attila
Vella Norbert
Moreau, Yves
Peeters, Liesbet
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.