Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM126277
035-os BibID:(scopus)85201493485
Első szerző:De Brouwer, Edward
Cím:Machine-learning-based prediction of disability progression in multiple sclerosis : an observational, international, multi-center study / De Brouwer E., Becker T., Werthen-Brabants L., Dewulf P., Iliadis D., Dekeyser C., Laureys G., Van Wijmeersch B., Popescu V., Dhaene T., Deschrijver D., Waegeman W., De Baets B., Stock M., Horakova D., Patti F., Izquierdo G., Eichau S., Girard M., Prat A., Lugaresi A., Grammond P., Kalincik T., Alroughani R., Grand'Maison F., Skibina O., Terzi M., Lechner-Scott J., Gerlach O., Khoury S. J., Cartechini E., Van Pesch V., Sa M. J., Weinstock-Guttman B., Blanco Y., Ampapa R., Spitaleri D., Solaro C., Maimone D., Soysal A., Iuliano G., Gouider R., Castillo-Trivino T., Sánchez-Menoyo J. L., Laureys G., van der Walt A., Oh J., Aguera-Morales E., Altintas A., Al-Asmi A., de Gans K., Fragoso Y., Csepany T., Hodgkinson S., Deri N., Al-Harbi T., Taylor B., Gray O., Lalive P., Rozsa C., McGuigan C., Kermode A., Sempere A. P., Mihaela S., Simo M., Hardy T., Decoo D., Hughes S., Grigoriadis N., Sas A., Vella N., Moreau Y., Peeters L.
Dátum:2024
ISSN:2767-3170
Megjegyzések:Background Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. Methods Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. Findings Machine learning models achieved a ROC-AUC of 0?71 ? 0?01, an AUC-PR of 0?26 ? 0?02, a Brier score of 0?1 ? 0?01 and an expected calibration error of 0?07 ? 0?04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. Conclusions Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.
Tárgyszavak:Orvostudományok Klinikai orvostudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Machine learning
disability progression
multiple sclerosis
Megjelenés:PLOS Digital Health. - 3 : 7 (2024), p. 1-25. -
További szerzők:Becker, Thijs Werthen-Brabants, Lorin Dewulf, Pieter Iliadis, Dimitrios Dekeyser, Cathérine Laureys, Guy Wijmeersch, Bart Van Popescu, Veronica Dhaene, Tom Deschrijver, Dirk Waegeman, Willem De Baets, Bernard Stock, Michael J. Horakova, Dana Patti, Francesco Izquierdo, Guillermo Eichau, Sara Girard, Marc Prat, Alexandre Lugaresi, Alessandra Grammond, Pierre Kalincik, Tomas Alroughani, Raed Grand'Maison, Francois Skibina, Olga Terzi, Murat Lechner-Scott, Jeannette Gerlach, Oliver Khoury, Samia J. Cartechini, Elisabetta Pesch, Vincent van Sá, Maria José Weinstock-Guttman, Bianca Blanco, Yolanda Ampapa, Radek Spitaleri, Daniele Solaro, Claudio Maimone, Davide Soysal, Aysun Iuliano, Gerardo Gouider, Riadh Castillo Triviño, Tamara Sanchez-Menoyo, Jose Laureys, Guy (Universitary Hospital Ghent) Walt, Anneke van der Oh, Jiwon Aguera-Morales, Eduardo Altintas, Ayse Al-Asmi, Abdullah de Gans, Koen Fragoso, Yara Csépány Tünde (1956-) (neurológus, pszichiáter) Hodgkinson, Suzanne Deri, Norma Al-Harbi, Talal Taylor, Bruce V. Gray, Orla Lalive, Patrice H. Rózsa Csilla McGuigan, Christopher Kermode, Allan G. Sempere, Perez A. Simu, Mihaela Simó Magdolna Hardy, Todd A. Decoo, Danny Hughes, Stella Grigoriadis, Nikolaos Sas Attila Vella Norbert Moreau, Yves Peeters, Liesbet
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1