Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM127270
Első szerző:Zamri, Siti Norziahidayu Amzee
Cím:The Mixed Partition Dimension : A New Resolvability Parameter in Graph Theory / Siti Norziahidayu Amzee Zamri, Sikander Ali, Muhammad Azeem, Husam A. Neamah, Bandar Almohsen
Dátum:2025
ISSN:2169-3536
Megjegyzések:In this article, we introduce a novel graph-theoretical parameter called the mixed partition dimension and apply it to the path graph and the hexagonal network. This parameter builds on the concept of resolvability in graphs, integrating vertex-based partition dimensions with edge-oriented strategies to characterize the complexity of graph structures. It is the extension of the mixed metric dimension and partition dimension. Suppose Let R = {W1,W2,...,Wk} be a partition of the vertex set V (G) of a graph G = (V,E), where W1 ? W2 ? ··· ? Wk = V(G) and Wi ? Wj = ? fori= j. Each subset Wi is non-empty, mutually disjoint, and collectively covers all vertices. The partition set Rpm) is called mixed resolving partition set if it satisfies: For any two distinct vertices x,y ? V , there exists Wi ? R such that:d(u, Wi)= d(v,Wi), for any two distinct edges e1,e2 ? E, there exists Wi ? R such that:d(e1,Wi)= d(e2,Wi) and for any vertex u ? V and edge e ? E, there exists Wi ? R such that: d(u,Wi)= d(e,Wi). The mixed partition dimension of G is the minimum number of subsets in a mixed resolving partition set Rpm). This parameter provides a unified measure of a graph`s complexity by accounting for both vertex and edge distinguishability, offering new insights into the structure of complex networks.
Tárgyszavak:Műszaki tudományok Informatikai tudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
partition resolving set
edge partition dimension
partition dimension
mixed partition dimension
hexagonal network
Megjelenés:IEEE Access. - Online first (2025), p. 1-9. -
További szerzők:Ali, Sikander Azeem, Muhammad Neamah, Husam A. (1990-) (mérnök) Almohsen, Bandar
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1