Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:bibEBI00020317
Első szerző:Székelyhidi László (matematikus)
Cím:Exponential polynomials and differential equations / Székelyhidi László
Dátum:1985
ISSN:0033-3883
Megjegyzések:In another paper ["The Fourier transform of exponential polynomials'', same journal, submitted] we introduced the Fourier transform of exponential polynomials on topological abelian groups; it is a polynomial-valued function on the set of all exponentials. We have shown some interesting properties of this Fourier transform and pointed out that it can be used to determine all exponential polynomial solutions of some types of linear functional equations. In this note we show that it can be used to determine all solutions of inhomogeneous linear differential equations with constant coefficients if the right-hand side is an exponential polynomial. The interest in the method is that we obtain all solutions without integration and it is much simpler than the classical method of `variation of constants'. Furthermore, the procedure obviously extends to linear systems of ordinary differential equations, and even in the case of polynomial coefficients we can simply determine all exponential polynomial solutions-if they exist.
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény hazai lapban
inhomogeneous linear differential equations with constant
coefficients
exponential polynomial
Fourier transform
inhomogeneous linear differential equations with constant coefficients
Megjelenés:Publicationes Mathematicae Debrecen. - 32 : 1-2 (1985), p. 105-109. -
Borító:
Rekordok letöltése1