CCL

Összesen 2 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM031398
035-os BibID:PMID:12417196 WOS:000179308500004
Első szerző:Fuxreiter Mónika (kutató vegyész)
Cím:Role of base flipping in specific recognition of damaged DNA by repair enzymes / Monika Fuxreiter, Ning Luo, Pál Jedlovszky, István Simon, Roman Osman
Dátum:2002
Megjegyzések:DNA repair enzymes induce base flipping in the process of damage recognition. Endonuclease V initiates the repair of cis, syn thymine dimers (TD) produced in DNA by UV radiation. The enzyme is known to flip the base opposite the damage into a non-specific binding pocket inside the protein. Uracil DNA glycosylase removes a uracil base from G.U mismatches in DNA by initially flipping it into a highly specific pocket in the enzyme. The contribution of base flipping to specific recognition has been studied by molecular dynamics simulations on the closed and open states of undamaged and damaged models of DNA. Analysis of the distributions of bending and opening angles indicates that enhanced base flipping originates in increased flexibility of the damaged DNA and the lowering of the energy difference between the closed and open states. The increased flexibility of the damaged DNA gives rise to a DNA more susceptible to distortions induced by the enzyme, which lowers the barrier for base flipping. The free energy profile of the base-flipping process was constructed using a potential of mean force representation. The barrier for TD-containing DNA is 2.5 kcal mol(-1) lower than that in the undamaged DNA, while the barrier for uracil flipping is 11.6 kcal mol(-1) lower than the barrier for flipping a cytosine base in the undamaged DNA. The final barriers for base flipping are approximately 10 kcal mol(-1), making the rate of base flipping similar to the rate of linear scanning of proteins on DNA. These results suggest that damage recognition based on lowering the barrier for base flipping can provide a general mechanism for other DNA-repair enzymes.
Tárgyszavak:Természettudományok Biológiai tudományok idegen nyelvű folyóiratközlemény külföldi lapban
egyetemen (Magyarországon) készült közlemény
Megjelenés:Journal of molecular biology. - 323 : 5 (2002), p. 823-834. -
További szerzők:Luo, Ning Jedlovszky Pál Simon István Osman, Roman
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
DOI
Borító:

2.

001-es BibID:BIBFORM031391
035-os BibID:PMID:10816003 WOS:000086871300011
Első szerző:Osman, Roman
Cím:Specificity of damage recognition and catalysis of DNA repair / R. Osman, M. Fuxreiter, N. Luo
Dátum:2000
ISSN:0097-8485
Megjegyzések:A common feature of DNA repair enzymes is their ability to recognize the damage independently of sequence in which they are found. The presence of a flipped out base inserted into the protein in several DNA-enzyme complexes suggests a contribution to enzyme specificity. Molecular simulations of damaged DNA indicate that the damage produces changes in DNA structure and changes the dynamics of DNA bending. The reduced bending force constant can be used by the enzyme to induce DNA bending and facilitate base flipping. We show that a thymine dimer (TD) containing DNA requires less energy to bend, lowering the barrier for base flipping. On the other hand, bending in DNA with U-G mismatch is affected only by a small amount and flipping is not enhanced significantly. T4 endonuclease V (endoV), which recognizes TD, utilizes the reduced barrier for flipping as a specific recognition element. In uracil DNA glycosylase (UDG), which recognizes U-G mismatches, base flipping is not enhanced and recognition is encoded in a highly specific binding pocket for the flipped base. Simulations of UDG and endoV in complex with damaged DNA provide insight into the essential elements of the catalytic mechanism. Calculations of pKas of active site residues in endoV and endoV-DNA complex show that the pKa, of the N-terminus is reduced from 8.01 to 6.52 while that of Glu-23 increases from 1.52 to 7.82. Thus, the key catalytic residues are in their neutral form. The simulations also show that Glu-23 is also H-bonded to O4' of the 5'-TD enhancing the nucleophilic attack on Cl and that Arg-26 enhances the hydrolysis by electrostatic stabilization but does not participate in proton transfer. In the enzyme-substrate complex of UDG, the role of electrostatic stabilization is played by His-268, whose pKa increases to 7.1 from 4.9 in the free enzyme. The pKa of Asp-145, the other important catalytic residue, remains around 4.2 in the free enzyme and in the complex. Thus, it can not act as a proton acceptor. In the complex the 3'-phosphate of uracil is stabilized next to Asp-145 by two bridging water molecules. Such a configuration activates one water molecule to act as a proton acceptor to produce a stabilizing hydronium ion and the other as a proton donor to produce the nucleophilic hydroxide. It appears that DNA glycosylases share commonalties in recognition of damage but differ in their catalytic mechanisms.
Tárgyszavak:Természettudományok Biológiai tudományok idegen nyelvű folyóiratközlemény külföldi lapban
külföldön készült közlemény
Megjelenés:Computers & Chemistry. - 24 : 3-4 (2000), p. 331-339. -
További szerzők:Fuxreiter Mónika (1969-) (kutató vegyész) Luo, Ning
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
Szerző által megadott URL
DOI
Borító:
Rekordok letöltése1