CCL

Összesen 3 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM113131
035-os BibID:(cikkazonosító)121 (scopus)85160315499 (wos)000994418900002
Első szerző:Ashwood, Lauren M.
Cím:Genomic, functional and structural analyses elucidate evolutionary innovation within the sea anemone 8 toxin family / Ashwood Lauren M., Elnahriry Khaled A., Stewart Zachary K., Shafee Thomas, Naseem Muhammad Umair, Szanto Tibor G., van der Burg Chloé A., Smith Hayden L., Surm Joachim M., Undheim Eivind A. B., Madio Bruno, Hamilton Brett R., Guo Shaodong, Wai Dorothy C. C., Coyne Victoria L., Phillips Matthew J., Dudley Kevin J., Hurwood David A., Panyi Gyorgy, King Glenn F., Pavasovic Ana, Norton Raymond S., Prentis Peter J.
Dátum:2023
ISSN:1741-7007
Megjegyzések:Background The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. Results We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephen- soni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both spe- cies are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. Conclusions Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.
Tárgyszavak:Orvostudományok Elméleti orvostudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Megjelenés:BMC Biology. - 21 : 1 (2023), p. 1-25. -
További szerzők:Elnahriry, Khaled A. Stewart, Zachary K. Shafee, Thomas Naseem, Muhammad Umair (1993-) (biofizikus, molekuláris biológus) Szántó Gábor Tibor (1980-) (vegyész) van der Burg, Chloé A. Smith, Hayden L. Surm, Joachim M. Undheim, Eivind A. B. Madio, Bruno Hamilton, Brett R. Guo, Shaodong Wai, Dorothy C. C. Coyne, Victoria L. Phillips, Matthew J. Dudley, Kevin J. Hurwood, David A. Panyi György (1966-) (biofizikus) King, Glenn F. Pavasovic, Ana Norton, Raymond S. Prentis, Peter
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

2.

001-es BibID:BIBFORM083629
035-os BibID:(WoS)000518872600011 (Scopus)85078049471 (PMID)31870846
Első szerző:Jin, Jiayi
Cím:Weaponisation 'on the fly' : convergent recruitment of knottin and defensin peptide scaffolds into the venom of predatory assassin flies / Jiayi Jin, Akello J. Agwa, G. Tibor Szanto, Agota Csóti, Gyorgy Panyi, Christina I. Schroeder, Andrew A. Walker, Glenn F. King
Dátum:2020
ISSN:0965-1748
Megjegyzések:Many arthropod venom peptides have potential as bioinsecticides, drug leads, and pharmacological tools due to their specific neuromodulatory functions. Assassin flies (Asilidae) are a family of predaceous dipterans that produce a unique and complex peptide-rich venom for killing insect prey and deterring predators. However, very little is known about the structure and function of their venom peptides. We therefore used an E. coli periplasmic expression system to express four disulfide-rich peptides that we previously reported to exist in venom of the giant assassin fly Dolopus genitalis. After purification, each recombinant peptide eluted from a C18 column at a position closely matching its natural counterpart, strongly suggesting adoption of the native tertiary fold. Injection of purified recombinant peptides into blowflies (Lucilia cuprina) and crickets (Acheta domestica) revealed that two of the four recombinant peptides, named rDg3b and rDg12, inhibited escape behaviour in a manner that was rapid in onset (<1 min) and reversible. Homonuclear NMR solution structures revealed that rDg3b and rDg12 adopt cystine-stabilised α/ß defensin and inhibitor cystine knot folds, respectively. Although the closest known homologues of rDg3b at the level of primary structure are dipteran antimicrobial peptides such as sapecin and lucifensin, a DALI search showed that the tertiary structure of rDg3b most closely resembles the KV11.1-specific α-potassium channel toxin CnErg1 from venom of the scorpion Centruroides noxius. This is mainly due to the deletion of a large, unstructured loop between the first and second cysteine residues present in Dg3b homologues from non-asiloid, but not existing in asiloid, species. Patch-clamp electrophysiology experiments revealed that rDg3b shifts the voltage-dependence of KV11.1 channel activation to more depolarised potentials, but has no effect on KV1.3, KV2.1, KV10.1, KCa1.1, or the Drosophila Shaker channel. Although rDg12 shares the inhibitor cystine knot structure of many gating modifier toxins, rDg12 did not affect any of these KV channel subtypes. Our results demonstrate that multiple disulfide-rich peptide scaffolds have been convergently recruited into asilid and other animal venoms, and they provide insight into the molecular evolution accompanying their weaponisation.
Tárgyszavak:Orvostudományok Elméleti orvostudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Diptera
Dolopus genitalis
Ion channel
K(V)11.1 (hERG)
Toxin
Megjelenés:Insect Biochemistry and Molecular Biology. - 118 (2020), p. 1-12. -
További szerzők:Agwa, Akello J. Szántó Gábor Tibor (1980-) (vegyész) Csóti Ágota (1989-) (biológus) Panyi György (1966-) (biofizikus) Schroeder, Christina I. Walker, Andrew A. King, Glenn F.
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

3.

001-es BibID:BIBFORM106378
035-os BibID:(cikkazonosító)22168 (WoS)000905026500053 (scopus)85144513741
Első szerző:Shi, Naiqi
Cím:Venom composition and pain-causing toxins of the Australian great carpenter bee Xylocopa aruana / Shi Naiqi, Szanto Tibor G., He Jia, Schroeder Christina I., Walker Andrew A., Deuis Jennifer R., Vetter Irina, Panyi György, King Glenn F., Robinson Samuel D.
Dátum:2022
ISSN:2045-2322
Megjegyzések:Most species of bee are capable of delivering a defensive sting which is often painful. A solitary lifestyle is the ancestral state of bees and most extant species are solitary, but information on bee venoms comes predominantly from studies on eusocial species. In this study we investigated the venom composition of the Australian great carpenter bee, Xylocopa aruana Ritsema, 1876. We show that the venom is relatively simple, composed mainly of one small amphipathic peptide ( XYTX1- Xa1a), with lesser amounts of an apamin homologue ( XYTX2-Xa2a) and a venom phospholipase-A2 ( PLA2). XYTX1- Xa1a is homologous to, and shares a similar mode-of-action to melittin and the bombilitins, the major components of the venoms of the eusocial Apis mellifera (Western honeybee) and Bombus spp. (bumblebee), respectively. XYTX1- Xa1a and melittin directly activate mammalian sensory neurons and cause spontaneous pain behaviours in vivo, effects which are potentiated in the presence of venom PLA2. The apamin-like peptide XYTX2- Xa2a was a relatively weak blocker of small conductance calcium-activated potassium ( KCa) channels and, like A. mellifera apamin and mast cell-degranulating peptide, did not contribute to pain behaviours in mice. While the composition and mode-of-action of the venom of X. aruana are similar to that of A. mellifera, the greater potency, on mammalian sensory neurons, of the major pain-causing component in A. mellifera venom may represent an adaptation to the distinct defensive pressures on eusocial Apidae.
Tárgyszavak:Orvostudományok Elméleti orvostudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Megjelenés:Scientific Reports. - 12 : 1 (2022), p. 1-13. -
További szerzők:Szántó Gábor Tibor (1980-) (vegyész) He, Jia Schroeder, Christina I. Walker, Andrew A. Deuis, Jennifer R. Vetter, Irina Panyi György (1966-) (biofizikus) King, Glenn F. Robinson, Samuel D.
Pályázati támogatás:K143071
OTKA
K142612
OTKA
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1