CCL

Összesen 2 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM019968
Első szerző:Engmann, Olivia
Cím:Cyclin-dependent kinase 5 activator p25 is generated during memory formation and is reduced at an early stage in Alzheimer's disease / Olivia Engmann, Tibor Hortobágyi, Andrew J. Thompson, Jennifer Guadagno, Claire Troakes, Salvador Soriano, Safa Al-Sarraj, Yong Kim, Karl Peter Giese
Dátum:2011
ISSN:0006-3223
Megjegyzések:BACKGROUND: The cyclin-dependent kinase 5 activator p35 can be cleaved into p25. Formation of p25 has been suggested to contribute to neurodegeneration in Alzheimer's disease (AD). However, overexpression of low levels of p25 in mice enhances memory formation. Therefore, it has been suggested that p25 formation might be an event early in AD to compensate for impairments in synaptic plasticity. Ongoing p25 formation has been hypothesized to contribute to neurodegeneration at the later stages of AD. METHODS: Here, we tested the early compensation hypothesis by analyzing the levels of p25 and its precursor p35 in AD postmortem samples from different brain regions at different stages of tau pathology, using quantitative Western blots. Furthermore, we studied p35 and p25 during spatial memory formation. By employing quantitative mass spectrometry, we identified proteins downstream of p25, which were then studied in AD samples. RESULTS: We found that p25 is generated during spatial memory formation. Furthermore, we demonstrate that overexpression of p25 in the physiological range increases the expression of two proteins implicated in spine formation, septin 7 and optic atrophy 1. We show that the expression of p35 and p25 is reduced as an early event in AD. Moreover, expression of the p25-regulated protein optic atrophy 1 was reduced in a time course similar to p25 expression. CONCLUSIONS: Our findings suggest that p25 generation is a mechanism underlying hippocampal memory formation that is impaired in the early stages of AD. Our findings argue against the previously raised early compensation hypothesis and they propose that p25-mediated neurotoxicity does not occur in AD.
Tárgyszavak:Orvostudományok Klinikai orvostudományok idegen nyelvű folyóiratközlemény külföldi lapban
Megjelenés:Biological Psychiatry. - 70 : 2 (2011), p. 159-168. -
További szerzők:Hortobágyi Tibor (1965-) (patológus) Thompson, Andrew J. Guadagno, Jennifer Troakes, Claire Soriano, Salvador Al-Sarraj, Safa Kim, Yong Giese, Karl Peter
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

2.

001-es BibID:BIBFORM020091
Első szerző:Harkány Tibor
Cím:Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity : relevance to Alzheimer's disease / Tibor Harkany, Tibor Hortobágyi, Maria Sasvári, Csaba Kónya, Botond Penke, Paul G. M. Luiten, Csaba Nyakas
Dátum:1999
ISSN:0278-5846
Megjegyzések:1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition and processing, and memory formation. A beta fragments are produced in a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor protein (APP). While conflicting data exist in the literature on the roles of A beta s in the brain, and particularly in AD, recent studies have provided firm experimental evidence for the direct neurotoxic properties of A beta. 2. Sequence analysis of A beta s revealed a high degree of evolutionary conservation and inter-species homology of the A beta amino acid sequence. In contrast, synthetic A beta fragments, even if modified fluorescent or isotope-labeled derivatives, are pharmacological candidates for in vitro and in vivo modeling of their cellular actions. During the past decade, acute injection, prolonged mini-osmotic brain perfusion approaches or A beta infusions into the blood circulation were developed in order to investigate the effects of synthetic A beta s, whereas transgenic models provided insight into the distinct molecular steps of pathological APP cleavage. 3. The hippocampus, caudate putamen, amygdala and neocortex all formed primary targets of acute neurotoxicity screening, but functional consequences of A beta infusions were primarily demonstrated following either intracerebroventricular or basal forebrain (medial septum or magnocellular basal nucleus (MBN)) infusions of A beta fragments. 4. In vivo investigations confirmed that, while the active core of A beta is located within the beta(25-35) sequence, the flanking peptide regions influence not only the folding properties of the A beta fragments, but also their in vivo neurotoxic potentials. 5. It has recently been established that A beta administration deranges neuron-glia signaling, affects the glial glutamate uptake and thereby induces noxious glutamatergic stimulation of nerve cells. In fact, a critical role for N-methyl-D-aspartate (NMDA) receptors was postulated in the neurotoxic processes. Additionally, A beta s might become internalized, either after their selective binding to cell-surface receptors or after membrane association in consequence of their highly lipophilic nature, and induce free radical generation and subsequent oxidative injury. Ca(2+)-mediated neurotoxic events and generation of oxygen free radicals may indeed potentiate each other, or even converge to the same neurotoxic events, leading to cell death. 6. Neuroprotection against A beta toxicity was achieved by both pre- and post-treatment with NMDA receptor channel antagonists. Moreover, direct radical-scavengers, such as vitamin E or vitamin C, attenuated A beta toxicity with high efficacy. Interestingly, combined drug treatments did not necessarily result in additive enhanced neuroprotection. 7. Similarly to the blockade of NMDA receptors, the neurotoxic action of A beta s could be markedly decreased by pharmacological manipulation of voltage-dependent Ca(2+)-channels, serotonergic IA or adenosine A1 receptors, and by drugs eliciting membrane hyperpolarization or indirect blockade of Ca(2+)-mediated intracellular consequences of intracerebral A beta infusions. 8. A beta neurotoxicity might be dose-dependently modulated by trace metals. In spite of the fact that zinc (Zn) may act as a potent inhibitor of the NMDA receptor channel, high Zn doses accelerate A beta fibril formation, stabilize the beta-sheet conformation and thereby potentiate A beta neurotoxicity. Combined trace element supplementation with Se, Mn, or Mg, which prevails over the expression of detoxifying enzymes or counteracts intracellular elevations of Ca2+, may reduce the neurotoxic impact of A beta s. 9. Alterations in the regulatory functions of the hypothalamo-pituitary-adrenal axis may contribute significantly to neurodegenerative changes in the brain. Furthermore, AD patients exhibit substantially increased circadia
Tárgyszavak:Orvostudományok Klinikai orvostudományok idegen nyelvű folyóiratközlemény külföldi lapban
Megjelenés:Progress In Neuro-Psychopharmacology and Biological Psychiatry. - 23 : 6 (1999), p. 963-1008. -
További szerzők:Hortobágyi Tibor (1965-) (patológus) Sasvári Mária Penke Botond Kónya Csaba Luiten, Paul G. M. Nyakas Csaba
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1