Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM094453
035-os BibID:(WoS)000654007400011 (Scopu)85107458834
Első szerző:Korteby, Mohamed Amine (informatikus)
Cím:Multi dimensional analysis of sensor communication processes / Mohmamed Amine Korteby, Zoltán Gál, Péter Polgár
Dátum:2021
ISSN:1787-5021 1787-6117
Megjegyzések:The Internet of Things requires communication mechanism to be optimal not only from the data transfer but from the energy consumption point of view, too. One of the most analyzed types of the sensor network is Low Energy Adaptive Clustering Hierarchy (LEACH) system depending on the population density, algorithm of cluster head election, heterogeneity of the energy and physical position of the nodes, velocity of the sink node, data aggregation rate and size of the data frame. Complexity of the system has been analyzed based on status data series of 360 simulation cases. New family of wireless sensor network (WSN) system is proposed with name CB-LEACH, having better characteristics than the classical LEACH system. The service ability of sensor network and dependency properties was done with analytic technique based on Singular Value Decomposition (SVD). Using this method there were identified most important modes serving as basis to regenerate responses of the studied sensor systems. It was found that the number of significant modes is just six. The novelty of the paper is a proof of concept that SVD is a useful multidimensional tool which can be used for describing the behavior of the newly proposed CB-LEACH family of sensor network mechanisms.
Tárgyszavak:Műszaki tudományok Informatikai tudományok idegen nyelvű folyóiratközlemény hazai lapban
folyóiratcikk
Wireless sensor networks
Low Energy Adaptive Clustering Hierrarchy (LEACH)
switching
cluster
classification analysis
Megjelenés:Annales Mathematicae et Informaticae. - 53 (2021), p. 169-182. -
További szerzők:Gál Zoltán (1966-) (informatikus) Polgár Péter (1996-) (informatikus)
Pályázati támogatás:EFOP-3.6.3-VEKOP-16-2017-00002
EFOP
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1