Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM107046
035-os BibID:(Scopus)85067408475
Első szerző:Abdelzaher, Esra (linguist)
Cím:Lexicon-based Detection of Violence on Social Media / Abdelzaher, Esra' M.
Dátum:2019
ISSN:2352-6416
Megjegyzések:This study adopts a lexicon-based approach to address violence on social media. It uses FrameNet 1.7 (fn) and WordNet 3.1 (wn) to build a hierarchical domain-specific language resource of violence. The proposed lexicon tethers fn's innovative integration of linguistic and paralinguistic knowledge to wn's hierarchically-organized database. This tether alleviates the need to gather all paralinguistic violence-associated scenes and organize their linguistic realizations hierarchically. The proposed methodology can be internationally applied, given the multilingual availability of fn and wn, to cognitively and quantitatively explore a concept or a phenomenon. The lexicon is applied, then, to a corpus representing posts and comments retrieved from Donald Trump's Facebook public page. Results reveal that the proposed lexicon recalls 92.68 of the total violence-related words in the corpus with a 76.31 precision (F-score=83.7). More important, relating wn to fn inspires the creation of new frames, suggests slight modifications to existing ones and advocates promising mapping between some frames and synsets.
Tárgyszavak:Bölcsészettudományok Nyelvtudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
frame semantics
FrameNet
language resource
social media
violence
Megjelenés:Cognitive Semantics. - 5 : 1 (2019), p. 32-69. -
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1