Összesen 1 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM119489
035-os BibID:(cikkazonosító)111468 (Scopus)85187957595 (WoS)001207916000001
Első szerző:Szabó Szilárd (geográfus)
Cím:Classification Assessment Tool: A program to measure the uncertainty of classification models in terms of class-level metrics / Szilárd Szabó, Imre J. Holb, Vanda Éva Abriha-Molnár, Gábor Szatmári, Sudhir Kumar Singh, Dávid Abriha
Dátum:2024
ISSN:1568-4946
Megjegyzések:Accuracy assessments are important steps of classifications and get higher relevance with the soar of machine and deep learning techniques. We provided a method for quick model evaluations with several options: calculate the class level accuracy metrics for as many models and classes as needed; calculate model stability using random subsets of the testing data. The outputs are single calculations, summaries of the repetitions, and/or all accuracy results per repetitions. Using the application, we demonstrated the possibilities of the function and analyzed the accuracies of three experiments. We found that some popular metrics, the binary Overall Accuracy, Sensitivity, Precision, and Specificity, as well as ROC curve, can provide false results when the true negative cases dominate. F1-score, Intersection over Union and the Matthews correlation coefficient were reliable in all experiments. Medians and interquartile ranges (IQR) of the repeated sampling from the testing dataset showed that IQR were small when a model was almost perfect or completely unacceptable; thus, IQR reflected the model stability, reproducibility. We found that there were no general, statistically justified relationship with the median and IQR, furthermore, correlations of accuracy metrics varied by experiments, too. Accordingly, a multi-metric evaluation is suggested instead of a single metric.
Tárgyszavak:Természettudományok Földtudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Model evaluation
Model stability
Testing
Repetitions
Python
Megjelenés:Applied Soft Computing. - 155 (2024), p. 1-15. -
További szerzők:Holb Imre (1973-) (agrármérnök) Molnár Vanda Éva (1994-) (környezetkutató) Szatmári Gábor Singh, Sudhir Kumar (1970-) (geográfus) Abriha Dávid (1995-) (geográfus)
Pályázati támogatás:K 138079
Egyéb
KKP 144068
OTKA
K 138503
OTKA
K 131478
OTKA
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1