CCL

Összesen 8 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM107267
Első szerző:Abbas, Sameer Annon (Mathematician)
Cím:On New Classes of Stretch Finsler Metrics / Annon Abbas Sameer, Laszlo Kozma
Dátum:2022
ISSN:2783-0500
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Megjelenés:Journal of Finsler Geometry and its Applications. - 3 : 1 (2022), p. 86-99. -
További szerzők:Kozma László (1960-) (matematikus)
Internet cím:DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

2.

001-es BibID:BIBFORM060923
Első szerző:Aradi Bernadett (alkalmazott matematikus)
Cím:A characterization of holonomy invariant functions on tangent bundles / Aradi Bernadett, Kertész Dávid Csaba
Dátum:2014
ISSN:1224-2780
Megjegyzések:We show that the holonomy invariance of a function on the tangent bundle of a manifold, together with very mild regularity conditions on the function, is equivalent to the existence of local parallelisms compatible with the function in a natural way. Thus, in particular, we obtain a characterization of generalized Berwald manifolds. We also construct a simple example of a generalized Berwald manifold which is not Berwald.
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
Megjelenés:Balkan Journal of Geometry and Its Applications. - 19 : 2 (2014), p. 1-10. -
További szerzők:Kertész Dávid Csaba (1988-) (matematikus)
Pályázati támogatás:TÁMOP-4.2.4 A/2-11/1-2012-0001
TÁMOP
MTA-DE
MTA
Egyenletek, Függvények és Görbék Kutatócsoport
Internet cím:Szerző által megadott URL
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

3.

001-es BibID:BIBFORM043115
Első szerző:Bessenyei Mihály (matematikus)
Cím:Convex separation by regular pairs / Mihály Bessenyei, Patrícia Szokol
Dátum:2013
ISSN:0047-2468 1420-8997
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
Fizikai-, Számítás- és Anyagtudomány
Doktori iskola
Megjelenés:Journal of Geometry. - 104 : 1 (2013), p. 45-56. -
További szerzők:Szokol Patrícia (1986-) (alkalmazott matematikus)
Pályázati támogatás:NK 81402
OTKA
TÁMOP-4.2.1/B-09/1/KONV-2010-0007
TÁMOP
Számok, függvények, egyenletek
TÁMOP-4.2.2/B-10/1-2010-0024
TÁMOP
Matematika- és Számítástudományok Doktori Iskola
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

4.

001-es BibID:BIBFORM047066
Első szerző:Szilasi József (matematikus)
Cím:Curvature collineations in spray manifolds / Szilasi József, Tóth Anna
Dátum:2012
ISSN:1224-2780
Megjegyzések:Curvature collineations of a spray manifold induced by the Lie symmetries of the underlying spray are studied. The basic observation is that the Jacobi endomorphism and the Berwald curvature are invariant under these symmetries; this implies the invariance of the further curvature data. Our main technical tool is an appropriate Lie derivative operator along the tangent bundle projection.
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
spray manifold
Lie symmetry
curvature collineation
Megjelenés:Balkan Journal of Geometry and Its Applications. - 17 : 2 (2012), p. 104-114. -
További szerzők:Tóth Anna (1985-) (matematika-kémia szakos tanár)
Pályázati támogatás:NK 81402
OTKA
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
Borító:

5.

001-es BibID:BIBFORM106863
035-os BibID:(WoS)000854852000001 (Scopus)85138276990 (cikkazonosító)45
Első szerző:Vincze Csaba (matematikus)
Cím:Finsler metrics and semi-symmetric compatible linear connections / Csaba Vincze, Márk Oláh
Dátum:2022
ISSN:0047-2468 1420-8997
Megjegyzések:Finsler metrics are direct generalizations of Riemannian metrics such that the quadratic Riemannian indicatrices in the tangent spaces of a manifold are replaced by more general convex bodies as unit spheres. A linear connection on the base manifold is called compatible with the Finsler metric if the induced parallel transports preserve the Finslerian length of tangent vectors. Finsler manifolds admitting compatible linear connections are called generalized Berwald manifolds Wagner (Dokl Acad Sci USSR (N.S.) 39:3-5, 1943). Compatible linear connections are the solutions of the so-called compatibility equations containing the components of the torsion tensor as unknown quantities. Although there are some theoretical results for the solvability of the compatibility equations (monochromatic Finsler metrics Bartelmeß and Matveev (J Diff Geom Appl 58:264-271, 2018), extremal compatible linear connections and algorithmic solutions Vincze (Aequat Math 96:53-70, 2022)), it is very hard to solve them in general because compatible linear connections may or may not exist on a Finsler manifold and may or may not be unique. Therefore special cases are of special interest. One of them is the case of the socalled semi-symmetric compatible linear connection with decomposable torsion tensor. It is proved Vincze (Publ Math Debrecen 83(4):741-755, 2013 (see also Vincze (Euro J Math 3:1098-1171, 2017))) that such a compatible linear connection must be uniquely determined. The original proof is based on averaging in the sense that the 1-form in the decomposition of the torsion tensor can be expressed by integrating differential forms on the tangent manifold over the Finslerian indicatrices. The integral formulas are very difficult to compute in practice. In what follows we present a new proof for the uniqueness by using linear algebra and some basic facts about convex bodies. We present an explicit formula for the solution without integration. The method has a new contribution to the problem as well: necessary conditions of the solvability are formulated in terms of intrinsic equations without unknown quantities.
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Convex bodies
Tangent hyperplanes
Minkowski norm
Finsler spaces
Generalized Berwald spaces
Semi-symmetric linear connections
Intrinsic Geometry
Megjelenés:Journal of Geometry. - 113 : 3 (2022), p. 1-14. -
További szerzők:Oláh Márk (1994-) (matematikus)
Pályázati támogatás:ÚNKP-21-3
Egyéb
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

6.

001-es BibID:BIBFORM103597
035-os BibID:(cikkazonosító)19 (WOS)000523266000001 (Scopus)85083269057
Első szerző:Vincze Csaba (matematikus)
Cím:On the extremal compatible linear connection of a Randers space / Csaba Vincze, Márk Oláh
Dátum:2020
ISSN:0047-2468 1420-8997
Megjegyzések:A linear connection on a Finsler manifold is called compatible to the metric if its parallel transports preserve the Finslerian length of tangent vectors. Generalized Berwald manifolds are Finsler manifolds equipped with a compatible linear connection. Since the compatibility to the Finslerian metric does not imply the unicity of the linear connection in general, the first step of checking the existence of compatible linear connections on a Finsler manifold is to choose the best one to look for. A reasonable choice is introduced in Vincze (J Differ Geom Appl, 2019. ) called the extremal compatible linear connection, which has torsion of minimal norm at each point. Randers metrics are special Finsler metrics that can be written as the sum of a Riemannian metric and a 1-form (they are "translates" of Riemannian metrics). In this paper, we investigate the compatibility equations for a linear connection to a Randers metric. Since a compatible linear connection is uniquely determined by its torsion, we transform the compatibility equations by taking the torsion components as variables. We determine when these equations have solutions, i.e. when the Randers space becomes a generalized Berwald space admitting a compatible linear connection. Describing all of them, we can select the extremal connection with the norm minimizing property. As a consequence, we obtain the characterization theorem in Vincze (Indag Math 26(2):363-379, 2014): a Randers space is a non-Riemannian generalized Berwald space if and only if the norm of the perturbating term with respect to the Riemannian part of the metric is a positive constant.
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Finsler spaces
Generalized Berwald spaces
Intrinsic geometry
Randers spaces
Extremal compatible linear connection
Megjelenés:Journal of Geometry. - 111 : 2 (2020), p. 1-16. -
További szerzők:Oláh Márk (1994-) (matematikus)
Pályázati támogatás:EFOP-3.6.1-16-2016-00022
EFOP
TKA-DAAD-307818
Egyéb
Internet cím:Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

7.

001-es BibID:BIBFORM102754
035-os BibID:(Scopus)85072748598
Első szerző:Vincze Csaba (matematikus)
Cím:On generalized Berwald surfaces with locally symmetric fourth root metrics / Cs. Vincze, T. R. Khoshdani, M. Olah
Dátum:2019
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Megjelenés:Balkan Journal of Geometry and Its Applications. - 24 : 2 (2019), p. 63-78. -
További szerzők:Khoshdani, Tahere Reza (matematikus) Oláh Márk (1994-) (matematikus)
Pályázati támogatás:UNKP-18-2
Egyéb
EFOP-3.6.1-16-2016-00022
EFOP
Internet cím:Szerző által megadott URL
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

8.

001-es BibID:BIBFORM020787
035-os BibID:MR2765406 Zbl.1217.53078
Első szerző:Vincze Csaba (matematikus)
Cím:An introduction to the theory of generalized conics and their applications / Cs. Vincze, Á. Nagy
Dátum:2011
ISSN:0393-0440
Tárgyszavak:Természettudományok Matematika- és számítástudományok idegen nyelvű folyóiratközlemény külföldi lapban
Megjelenés:Journal of Geometry and Physics. - 61 : 4 (2011), p. 815-828. -
További szerzők:Nagy Ábris (1985-) (matematikus)
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
DOI
Borító:
Rekordok letöltése1