Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
CCL parancs
CCL
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM115323
035-os BibID:
(WoS)001086503900002 (Scopus)85174061140
Első szerző:
Phinzi, Kwanele
Cím:
Understanding the role of training sample size in the uncertainty of high-resolution LULC mapping using random forest / Kwanele Phinzi, Njoya Silas Ngetar, Quoc Bao Pham, Gashaw Gismu Chakilu, Szilárd Szabó
Dátum:
2023
ISSN:
1865-0473 1865-0481
Megjegyzések:
High-resolution sensors onboard satellites are generally reputed for rapidly producing land-use/land-cover (LULC) maps with improved spatial detail. However, such maps are subject to uncertainties due to several factors, including the training sample size. We investigated the effects of different training sample sizes (from 1000 to 12,000 pixels) on LULC classification accuracy using the random forest (RF) classifier. Then, we analyzed classification uncertainties by determining the median and the interquartile range (IQR) of the overall accuracy (OA) values through repeated k-fold cross-validation. Results showed that increasing training pixels significantly improved OA while minimizing model uncertainty. Specifically, larger training samples, ranging from 9000 to 12,000 pixels, exhibited narrower IQRs than smaller samples (1000-2000 pixels). Furthermore, there was a significant variation (Chi2 = 85.073; df = 11; p < 0.001) and a significant trend (J-T = 4641, p < 0.001) in OA values across various training sample sizes. Although larger training samples generally yielded high accuracies, this trend was not always consistent, as the lowest accuracy did not necessarily correspond to the smallest training sample. Nevertheless, models using 9000-11,000 pixels were effective (OA > 96%) and provided an accurate visual representation of LULC. Our findings emphasize the importance of selecting an appropriate training sample size to reduce uncertainties in high-resolution LULC classification.
Tárgyszavak:
Természettudományok
Földtudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
High-resolution sensor
LULC
Training sample size
Random forest
Classification uncertainty
Megjelenés:
Earth Science Informatics. - 16 : 4 (2023), p. 3667-3677. -
További szerzők:
Ngetar Njoya Silas
Pham, Quoc Bao
Chakilu, Gashaw Gismu
Szabó Szilárd (1974-) (geográfus)
Pályázati támogatás:
K138079
Egyéb
K138503
Egyéb
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.