Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
CCL parancs
CCL
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM046012
Első szerző:
Spisák Tamás (programtervező matematikus, informatikus)
Cím:
BrainCON : graph theory based multimodal brain connectivity analysis and visualization software / Spisák Tamás, Opposits Gábor, Kis Sándor Attila, Pohubi László, Jakab András, Puskás Szilvia, Clemens Béla, Emri Miklós
Dátum:
2013
Megjegyzések:
PURPOSE Graph theory based structural and functional brain connectivity analysis is a novel method providingnew insights into the dynamics and complexity of the brain by modeling it's regional interactions [1].Due to the heterogeneity and dynamic development of the applied mathematical models and analysistechniques the software support of this field is still poorly accomplished [2].Our purpose was to develop a user friendly software system dedicated for the analysis andvisualization of multimodal brain connectivity data based on EEG, fMRI and DTI data.METHODSReconstruction of brain networks is modality dependent and can be performed with various state-of-the-art software tools, eg. BrainMOD (www.minipetct.com/brainmod) [3], Matlab and R for fMRI, FSL or DTI and NeuroGuide for EEG-LORETA data. With the aid of the BrainNET Utils software package, these software tools can be easily fitted into a processing pipeline and the resulting connectivity matrices can be loaded into BrainCON. Reconstructed brain networks can be displayed and thresholded interactively. Cost based adaptive techniques, soft-thresholding and cost-integration [5] method was implemented to solve the problem of thresholding and allow population based comparisons. Various methods are present for global (small worldness, efficiency, clustering coefficient, characteristic path length, etc.), modular (community detection) and nodal (strength, efficiency, betweenness centrality, hub scores) analysis of binary and weighted graphs in both individual and population level [4]. Interpreting the results is aided by real-time 2D and 3D "glass brain" visualization techniques and various plots. The software system was implemented mainly in C++ and partly in R.RESULTS AND CONCLUSIONThe software encapsulates state-of-the-art mathematical graph analysis methods and enhanced real-time network visualization techniques and provides a new user friendly tool in the field of brain connectivity research. The program is built upon the MultiModal Medical Imaging (M3I) software library system (www.minipetct.com/m3i) and runs on Windows 7 and Windows Xp operation systems and various Linux distributions (www.minipetct.com/braincon). The hardware requirements of the application match the current average PC configurations used in medical image analysis.
Tárgyszavak:
Orvostudományok
Klinikai orvostudományok
előadáskivonat
software
medical imaging
brain connectivity
graph theory
complex network
Megjelenés:
Electronic presentation online system : ECR Congress 2013 / [ed. ESR]. - p. C-2588.
További szerzők:
Opposits Gábor (1974-) (fizikus, szoftver fejlesztő)
Kis Sándor Attila (1973-) (fizikus)
Pohubi László (1959-) (fizikus)
Jakab András (1953-)
Puskás Szilvia (1979-) (neurológus)
Clemens Béla (1950-) (neurológus)
Emri Miklós (1962-) (fizikus)
Pályázati támogatás:
TÁMOP-4.2.2.C-11/1/KONV-2012-0001
TÁMOP
TÁMOP-4.2.2/B-10/1-2010-0024
TÁMOP
Internet cím:
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.