CCL

Összesen 3 találat.
#/oldal:
Részletezés:
Rendezés:

1.

001-es BibID:BIBFORM122021
Első szerző:Ali, Ali Hasan (matematikus)
Cím:Provably Efficient and Fast Technique for Determining the Size of a Brain Tumor in T1 MRI Images / Ali Hasan Ali, Hend Muslim Jasim, Zaid Ameen Abduljabbar, Vincent Omollo Nyangaresi, Samir M. Umran, Junchao Ma, Dhafer G. Honi
Dátum:2024
Tárgyszavak:Műszaki tudományok Informatikai tudományok előadáskivonat
könyvrészlet
Megjelenés:International Conference on Artificial Intelligence in Information and Communication (ICAIIC) / eds. IEEE. - p. 608-613. -
További szerzők:Jasim, Hend Muslim Abduljabbar, Zaid Ameen Nyangaresi, Vincent Omollo Umran, Samir M. Ma, Junchao Alshuwaili, Dhafer Gheni Honi (1991) (Informatics)(PhD)
Internet cím:DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:

2.

001-es BibID:BIBFORM122018
Első szerző:Alshuwaili, Dhafer Gheni Honi (Informatics)(PhD)
Cím:Towards Fast Edge Detection Approach for Industrial Products / Dhafer G. Honi, Ali Hasan Ali, Zaid Ameen Abduljabbar, Junchao Ma, Vincent Omollo Nyangaresi, Keyan Abdul-Aziz Mutlaq, Samir M. Umran
Dátum:2023
Tárgyszavak:Műszaki tudományok Informatikai tudományok előadáskivonat
könyvrészlet
Megjelenés:2022 IEEE 21st International Conference on Ubiquitous Computing and Communications. - - (2023), p. 239-244. -
További szerzők:Ali, Ali Hasan (1989-) (matematikus) Abduljabbar, Zaid Ameen Ma, Junchao Nyangaresi, Vincent Omollo Mutlaq, Keyan Abdul-Aziz Umran, Samir M.
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
DOI
Borító:

3.

001-es BibID:BIBFORM123055
Első szerző:Rana, Jassim Mohammed
Cím:A Robust Hybrid Machine and Deep Learning-based Model for Classification And Identification in Chest X-ray Images / Rana Jassim Mohammed, Mudhafar Jalil Jassim Ghrabat, Zaid Ameen Abduljabbar, Vincent Omollo Nyangaresi, Iman Qays Abduljaleel, Ali Hasan Ali, Dhafer G. Honi, Husam A. Neamah
Dátum:2024
ISSN:2241-4487 1792-8036
Megjegyzések:Successful medical treatment for patients with COVID-19 requires rapid and accurate diagnosis. Fighting the COVID-19 pandemic requires an automated system to diagnose the virus on Chest X-Ray (CXR) images. CXR images are frequently used in healthcare as they offer the potential for rapid and accurate disease diagnosis. SARS-CoV-2 targets the respiratory system, resulting in pneumonia with additional symptoms, such as dry cough, fatigue, and fever, which could be misdiagnosed as pneumonia, TB, or lung cancer. There is difficulty in differentiating the features of COVID-19 from other diseases that have similarities in CXR images. Automated Computer-Aided Diagnosis (CAD) systems incorporate machine or deep learning methods to improve efficiency and accuracy. CNNs are among the most widely used methods, as they have shown encouraging accuracy in identifying COVID-19 in CXR images. This study presents a hybrid deep learning model to provide faster diagnosis of COVID-19 infection using CXR images. The Densenet201 model was used for feature extraction and a Multi-Layer Perceptron (MLP) was used for classification. The proposed method achieved 98.82% accuracy and similar sensitivity, specificity, precision, recall, and F1 score. These results are promising when compared to other DL models trained in similar datasets.
Tárgyszavak:Műszaki tudományok Informatikai tudományok idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
COVID-19
Chest X-Ray (CXR)
DL
ML
densenet201
MLP
Megjelenés:Engineering, Technology and Applied Science Research. - 14 : 5 (2024), p. 16212-16220. -
További szerzők:Mudhafar, Jalil Jassim Ghrabat Zaid, Ameen Abduljabbar Vincent, Omollo Nyangaresi Iman, Qays Abduljaleel Ali, Ali Hasan (1989-) (matematikus) Alshuwaili, Dhafer Gheni Honi (1991) (Informatics)(PhD) Neamah, Husam A. (1990-) (mérnök)
Internet cím:Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Rekordok letöltése1