Bejelentkezés
Magyar
Toggle navigation
Tudóstér
Bejelentkezés
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
Összesen 1 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM106845
035-os BibID:
(WoS)000938554700001 (Scopus)85148767987
Első szerző:
Tóth Róbert (informatikus)
Cím:
Lossless Encoding of Mental Cutting Test Scenarios for Efficient Development of Spatial Skills / Róbert Tóth, Miklós Hoffmann, Marianna Zichar
Dátum:
2023
ISSN:
2227-7102
Megjegyzések:
In the last decade, various mobile applications have been developed to improve and measure spatial abilities using different spatial tests and tasks through augmented reality (AR), Virtual Reality (VR), or embedded 3D viewers. The Mental Cutting Test (MCT) is one of the most well-known and popular tests for this purpose, but it needs a vast number of tasks (scenarios) for effective practice and measurement. We have recently developed a script-aided method that automatically generates and permutes Mental Cutting Test scenarios and exports them to an appropriate file format (to GLB (glTF 2.0) assets) representing the scenarios. However, the significant number of permutations results in more than 1,000,000 assets, requiring more than 6 GB of storage space. This paper introduces an encoding scheme consisting of four stages to handle this issue through significantly reducing the storage space, making the app suitable for everyday individual use, even on a mobile phone. The proposed method encodes a subset of assets from which it can decode the whole dataset with 3% time complexity compared to classical Blender's computations, exceeding the compression ratio of 10,000 and storage space saving 99.99%. This paper explains the features of the original assets, introduces the encoding and decoding functions with the format of documents, and then measures the solution's efficiency based on our dataset of MCT scenarios.
Tárgyszavak:
Műszaki tudományok
Informatikai tudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Mental Cutting Test
augmented reality
GLB
assets
encoding
compression
Megjelenés:
Education Sciences. - 13 : 2 (2023), p. 1-21. -
További szerzők:
Hoffmann Miklós (1966-) (matematikus, informatikus)
Bodroginé Zichar Marianna (1971-) (informatikus, matematikus)
Pályázati támogatás:
ÚNKP-22-3
Egyéb
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v10.1.21-SNAPSHOT
© 2024
Monguz kft.
Minden jog fenntartva.