Magyar
Toggle navigation
Tudóstér
Magyar
Tudóstér
Keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Egyszerű keresés
Összetett keresés
CCL keresés
Böngészés
Saját polc tartalma
(
0
)
Korábbi keresések
CCL parancs
CCL
Összesen 3 találat.
#/oldal:
12
36
60
120
Rövid
Hosszú
MARC
Részletezés:
Rendezés:
Szerző növekvő
Szerző csökkenő
Cím növekvő
Cím csökkenő
Dátum növekvő
Dátum csökkenő
1.
001-es BibID:
BIBFORM084936
035-os BibID:
(WoS)000539535700067 (Scopus)85083768890
Első szerző:
Phinzi, Kwanele
Cím:
Machine Learning for Gully Feature Extraction Based on a Pan-Sharpened Multispectral Image: Multiclass vs. Binary Approach / Kwanele Phinzi, Abriha Dávid, Bertalan László, Holb Imre, Szabó Szilárd
Dátum:
2020
ISSN:
2220-9964
Tárgyszavak:
Természettudományok
Földtudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
machine learning
gully erosion
pan sharpening
feature extraction
Megjelenés:
ISPRS International Journal of Geo-Information. - 9 : 4 (2020), p. 1-20. -
További szerzők:
Abriha Dávid (1995-) (geográfus)
Bertalan László (1989-) (geográfus)
Holb Imre (1973-) (agrármérnök)
Szabó Szilárd (1974-) (geográfus)
Pályázati támogatás:
ED_18-1-2019-0028
Egyéb
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
2.
001-es BibID:
BIBFORM119489
035-os BibID:
(Scopus)85187957595 (WoS)001207916000001
Első szerző:
Szabó Szilárd (geográfus)
Cím:
Classification Assessment Tool: A program to measure the uncertainty of classification models in terms of class-level metrics / Szilárd Szabó, Imre J. Holb, Vanda Éva Abriha-Molnár, Gábor Szatmári, Sudhir Kumar Singh, Dávid Abriha
Dátum:
2024
ISSN:
1568-4946
Megjegyzések:
Accuracy assessments are important steps of classifications and get higher relevance with the soar of machine and deep learning techniques. We provided a method for quick model evaluations with several options: calculate the class level accuracy metrics for as many models and classes as needed; calculate model stability using random subsets of the testing data. The outputs are single calculations, summaries of the repetitions, and/or all accuracy results per repetitions. Using the application, we demonstrated the possibilities of the function and analyzed the accuracies of three experiments. We found that some popular metrics, the binary Overall Accuracy, Sensitivity, Precision, and Specificity, as well as ROC curve, can provide false results when the true negative cases dominate. F1-score, Intersection over Union and the Matthews correlation coefficient were reliable in all experiments. Medians and interquartile ranges (IQR) of the repeated sampling from the testing dataset showed that IQR were small when a model was almost perfect or completely unacceptable; thus, IQR reflected the model stability, reproducibility. We found that there were no general, statistically justified relationship with the median and IQR, furthermore, correlations of accuracy metrics varied by experiments, too. Accordingly, a multi-metric evaluation is suggested instead of a single metric.
Tárgyszavak:
Természettudományok
Földtudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Model evaluation
Model stability
Testing
Repetitions
Python
Megjelenés:
Applied Soft Computing. - 155 (2024), p. 1-15. -
További szerzők:
Holb Imre (1973-) (agrármérnök)
Molnár Vanda Éva (1994-) (környezetkutató)
Szatmári Gábor (1988-) (geográfus)
Singh, Sudhir Kumar (1970-) (geográfus)
Abriha Dávid (1995-) (geográfus)
Pályázati támogatás:
K 138079
Egyéb
KKP 144068
OTKA
K 138503
OTKA
K 131478
OTKA
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
3.
001-es BibID:
BIBFORM123652
035-os BibID:
(Scopus)85202727566 (WoS)001302328300001
Első szerző:
Szopos Noémi Mária (geográfus)
Cím:
Flood risk assessment of a small river with limited available data / Noémi Mária Szopos, Imre J. Holb, Abriha Dávid, Szilárd Szabó
Dátum:
2024
ISSN:
2366-3286 2366-3294
Megjegyzések:
Flood risk modeling of small watercourses is challenging when only limited input data are available. Therefore, this study assessed the flood characteristics of a small river (Tarna River: entire watershed-C, upper-VS, middle-TMS, and lower section-TOS) from 1990 to 2019. The assessment focused on modeling, model calibration, and validation using feature event-based time-series data in data-scarce environments. We showed that since the 2000s, the number of high-water levels above 250 cm, and the frequency of three flood types had increased. Flood simulation results showed the largest flooded area in the TMS section, followed by the VS, and then the TOS. The outcomes from the VS, TMS, and TOS sections did not exhibit superior performance compared to the C area. Models performed well for larger flood events, with Kling Gupta Efficiency corresponding well to NRMSE and Nash-Sutcliffe efficiency metrics. Accordingly, flood events characterized by the longest duration and high-water levels yielded outstanding results across all areas, followed by moderate flood events with good accuracy. Normal water level events exhibited significant deviations from the reference across all sections. In summary, despite the event-based modeling challenges in data-limited environments, such models can still mitigate potential flood events and improve decision-making processes.
Tárgyszavak:
Természettudományok
Földtudományok
idegen nyelvű folyóiratközlemény külföldi lapban
folyóiratcikk
Hydrological modeling
HEC-RAS
Model accuracy
Flood events
Megjelenés:
Spatial Information Research. - 32 : - (2024), p. 1-14. -
További szerzők:
Holb Imre (1973-) (agrármérnök)
Abriha Dávid (1995-) (geográfus)
Szabó Szilárd (1974-) (geográfus)
Pályázati támogatás:
RRF-2.3.1-21-2022-00008
Egyéb
Internet cím:
Szerző által megadott URL
DOI
Intézményi repozitóriumban (DEA) tárolt változat
Borító:
Saját polcon:
Rekordok letöltése
1
Corvina könyvtári katalógus v8.2.27
© 2023
Monguz kft.
Minden jog fenntartva.